3,029 research outputs found

    Dynamic low-level context for the detection of mild traumatic brain injury.

    Get PDF
    Mild traumatic brain injury (mTBI) appears as low contrast lesions in magnetic resonance (MR) imaging. Standard automated detection approaches cannot detect the subtle changes caused by the lesions. The use of context has become integral for the detection of low contrast objects in images. Context is any information that can be used for object detection but is not directly due to the physical appearance of an object in an image. In this paper, new low-level static and dynamic context features are proposed and integrated into a discriminative voxel-level classifier to improve the detection of mTBI lesions. Visual features, including multiple texture measures, are used to give an initial estimate of a lesion. From the initial estimate novel proximity and directional distance, contextual features are calculated and used as features for another classifier. This feature takes advantage of spatial information given by the initial lesion estimate using only the visual features. Dynamic context is captured by the proposed posterior marginal edge distance context feature, which measures the distance from a hard estimate of the lesion at a previous time point. The approach is validated on a temporal mTBI rat model dataset and shown to have improved dice score and convergence compared to other state-of-the-art approaches. Analysis of feature importance and versatility of the approach on other datasets are also provided

    Visual and Contextual Modeling for the Detection of Repeated Mild Traumatic Brain Injury.

    Get PDF
    Currently, there is a lack of computational methods for the evaluation of mild traumatic brain injury (mTBI) from magnetic resonance imaging (MRI). Further, the development of automated analyses has been hindered by the subtle nature of mTBI abnormalities, which appear as low contrast MR regions. This paper proposes an approach that is able to detect mTBI lesions by combining both the high-level context and low-level visual information. The contextual model estimates the progression of the disease using subject information, such as the time since injury and the knowledge about the location of mTBI. The visual model utilizes texture features in MRI along with a probabilistic support vector machine to maximize the discrimination in unimodal MR images. These two models are fused to obtain a final estimate of the locations of the mTBI lesion. The models are tested using a novel rodent model of repeated mTBI dataset. The experimental results demonstrate that the fusion of both contextual and visual textural features outperforms other state-of-the-art approaches. Clinically, our approach has the potential to benefit both clinicians by speeding diagnosis and patients by improving clinical care

    Computational analysis reveals increased blood deposition following repeated mild traumatic brain injury.

    Get PDF
    Mild traumatic brain injury (mTBI) has become an increasing public health concern as subsequent injuries can exacerbate existing neuropathology and result in neurological deficits. This study investigated the temporal development of cortical lesions using magnetic resonance imaging (MRI) to assess two mTBIs delivered to opposite cortical hemispheres. The controlled cortical impact model was used to produce an initial mTBI on the right cortex followed by a second injury induced on the left cortex at 3 (rmTBI 3d) or 7 (rmTBI 7d) days later. Histogram analysis was combined with a novel semi-automated computational approach to perform a voxel-wise examination of extravascular blood and edema volumes within the lesion. Examination of lesion volume 1d post last injury revealed increased tissue abnormalities within rmTBI 7d animals compared to other groups, particularly at the site of the second impact. Histogram analysis of lesion T2 values suggested increased edematous tissue within the rmTBI 3d group and elevated blood deposition in the rm TBI 7d animals. Further quantification of lesion composition for blood and edema containing voxels supported our histogram findings, with increased edema at the site of second impact in rmTBI 3d animals and elevated blood deposition in the rmTBI 7d group at the site of the first injury. Histological measurements revealed spatial overlap of regions containing blood deposition and microglial activation within the cortices of all animals. In conclusion, our findings suggest that there is a window of tissue vulnerability where a second distant mTBI, induced 7d after an initial injury, exacerbates tissue abnormalities consistent with hemorrhagic progression

    Experiments on the Use of Signal Visualization Technique for In-Service Stall Detection in Industrial Fans

    Get PDF
    The paper describes a stalldetection criterion based on the use of symmetrised dot pattern (SDP) visual waveform analysis and the stallwarning methodology based on a recently developed analysis. The experimental study explores the capability of the SDP technique to detect the stall incipience and evolution in the presence of low signal-to-noise ratios, that is, a noisy working environment. Moreover, the investigation presents a systematic analysis on the probe position's influence with respect to the fan section. As such, the SDP technique in combination with an acoustic measurement is able to create a visual pattern that one can use to detect stall from potentially any location around the fan/duct system

    Experimental Characterisation of the Far-Field Noise in Axial Fans Fitted with Shaped Tip End-Plates

    Get PDF
    The authors investigate the far-field noise emissions of a datum fan blade fitted with tip end-plate geometries, originally designed to control the leakage vortex swirl level. The end-plate geometries influence the tip-leakage flow, vortex formation, and swirl level. In doing so, the end-plate geometries influence the sound-power levels. After an evaluation of fan rotors' aerodynamic performance, the study compares the rotors' far-field noise signature characterised in terms of sound-power and pressure-level spectra to enable and assess the end-plate acoustic pay-off. The investigation attempts to establish a cause-and-effect relationship between the tip-flow dynamics and the radiated sound fields, exploring the diverse directivity patterns. The authors found a tonal reduction, due to the enhanced blade-tip end-plates and clarified the relevance of the tip features influencing the radial distribution of the noise sources using coherence analysis. The modified multiple-vortex breakdown end-plate design was effective in reducing the broadband noise, giving an improvement in the frequency range of the turbulent noise

    Experimental study on the self-noise of a turbulent round jet investing a cambered aerofoil

    Get PDF
    This paper describes an experimental investigation of the interaction noise in a jet impacting isolated aerofoils. The authors conducted the study in a low-speed wind tunnel ending in an anechoic chamber, and focussed on the tip region of two types of isolated low speed axial fan cambered aerofoils. The authors set the Mach number, Reynolds number and blade incidence angles in a static frame of reference to reproduce a flow field condition kinematically similar to that in the rotating frame. They correlated far-field noise measurements with near-field pressure measurements which they took at different chord-wise positions in the blade’s tip region. The aim was to find, by means of a cross correlation technique, a causal relationship between the aerodynamic sources in the tip region and noise emissions in order to establish the role of aerofoil self-noise associated with turbulent structures which turbulent inflow and blade tip geometry interaction produced

    A Critical Review of Stall Control Techniques in Industrial Fans

    Get PDF
    This paper reviews modelling and interpretation advances of industrial fan stall phenomena, related stall detection methods, and control technologies. Competing theories have helped engineers refine fan stability and control technology. With the development of these theories, three major issues have emerged. In this paper, we first consider the interplay between aerodynamic perturbations and instability inception. An understanding of the key physical phenomena that occurs with stall inception is critical to alleviate stall by design or through active or passive control methods. We then review the use of passive and active control strategies to improve fan stability. Whilst historically compressor design engineers have used passive control techniques, recent technologies have prompted them to install high-response stall detection and control systems that provide industrial fan designers with new insight into how they may detect and control stall. Finally, the paper reviews the methods and prospects for early stall detection to complement control systems with a warning capability. Engineers may use an effective real-time stall warning system to extend a fan's operating range by allowing it to operate safely at a reduced stall margin. This may also enable the fan to operate in service at a more efficient point on its characteristic
    • …
    corecore